

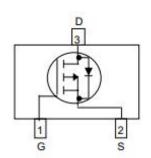
SSC8137GS6A

P-Channel Enhancement Mode MOSFET

Features

VDS	VGS	RDSON Typ.	ID
-30V	201/	23mR@-10V	-7A
-307	±20V	31mR@-4V5	-1A

Description


This P-Channel enhancement mode power FETs are produced with high cell density, DMOS trench technology, which is especially used to minimize on-state resistance. This device is particularly suited for low voltage application such as portable equipment, power management and other battery powered circuits and low in-line power loss are needed in a very small outline surface mount package.

Applications

- TFT panel power switch
- High side DC/DC Converter
- High side driver for brushless DC motor
- Portable DVD, DPF

Pin configuration

Top view

SOT23-3L

Marking

Ordering Information

Device	Package	Shipping
SSC8137GS6A	SOT23-3	3000/Reel

➤ Absolute Maximum Ratings(T_A=25°C unless otherwise noted)

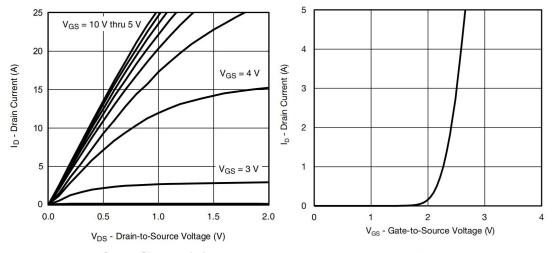
Symbol	Parameter	Ratings	Unit
V _{DSS}	Drain-to-Source Voltage	-30	\ \
V _{GSS}	Gate-to-Source Voltage	±20	V
I _D	Continuous Drain Current ^a	-7	А
I _{DM}	Pulsed Drain Current ^b	-28	А
P _D	Power Dissipation ^a	2	W
TJ	Operation junction temperature	-55 to 150	°C
T _{STG}	Storage temperature range	-55 to 150	°C

➤ Thermal Resistance Ratings(T_A=25°C unless otherwise noted)

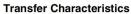
Symbol	Parameter	Ratings	Unit
R ₀ JA	Junction-to-Ambient Thermal Resistance ^a	64	°C/W

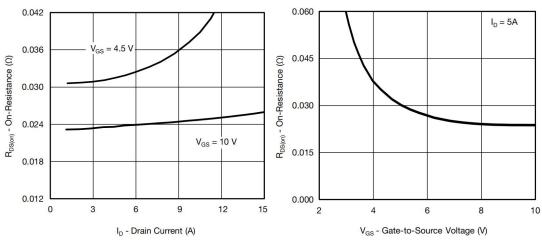
Note:

- a. The value of $R_{\theta JA}$ is measured with the device mounted on 1 in² FR-4 board with 2oz.copper,in a still air environment with T_A =25°C. The value in any given application depends on the user is specific board design. The current rating is based on the t \leq 10s thermal resistance rating.
- b. Repetitive rating, pulse width limited by junction temperature.

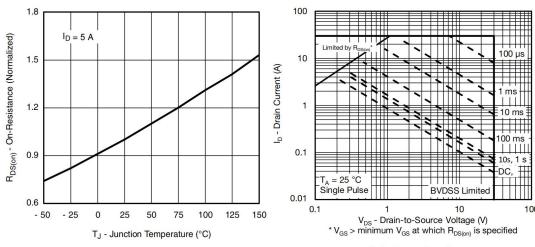


➤ **Electronics Characteristics**(T_A=25°C unless otherwise noted)


Symbol	Parameter	Test Conditions	Min	Тур.	Max	Unit
V _{(BR)DSS}	Drain-Source Breakdown Voltage	VGS=0V,ID=-250uA	-30			V
V _{GS (th)}	Gate Threshold Voltage	VDS=VGS,ID=-250uA	-1	-1.5	-2	V
D	Drain-Source	VGS=-10V,ID=-5A		23	30	
R _{DS(on)}	On-Resistance	VGS=-4.5V,ID=-4A		31	45	mR
I _{DSS}	Zero Gate Voltage Drain Current	VDS=-30V,VGS=0V			-1	uA
I _{GSS}	Gate-Source leak current	VGS=±20V,VDS=0V			±100	nA
G _{FS}	Transconductance	VDS=-10V,ID=-5A		15		S
V _{SD}	Forward Voltage	VGS=0V,IS=-3A		-0.8	-1.3	V
Ciss	Input Capacitance			1400		
Coss	Output Capacitance	VDS=-15V, VGS=0V, F=1MHZ		730		pF
Crss	Reverse Transfer Capacitance			590		
T _{D(ON)}	Turn-on delay time			11		
Tr	Rise time	VGS=-10V, VDS=-15V, RL=2R, RG=3R,ID=-2A		25		
T _{D(OFF)}	Turn-off delay time			70		ns
Tf	Fall time			41		
Q_{G}	Total Gate Charge			25		
Q _{GS}	Gate to Source Charge	VGS=-10V, VDS=-15V ID=-2A		2		nC
Q _{GD}	Gate to Drain Charge			4		

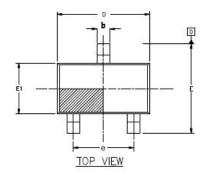


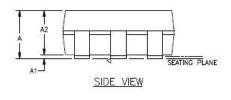
➤ Typical Characteristics(T_A=25°C unless otherwise noted)

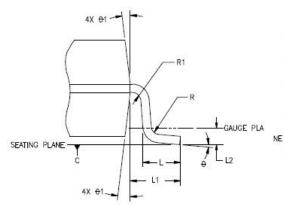

Output Characteristics

On-Resistance vs. Drain Current

On-Resistance vs. Gate-to-Source Voltage




On-Resistance vs. Junction Temperature


Safe Operating Area

Package Information

SYMBOL	MIN	NOM	MAX
A		-	1.35
A1	0	-	0.15
A2	1.0	1.1	1.2
ь	0.35	_	0.45
Ь1	0.32	144	0.38
С	0.14	-	0.20
c1	0.14	0.15	0.16
D	2.82	2.92	3.02
E	2.60	2.80	3.00
E1	1.526	1.626	1.726
е	1.8	1.9	2.0
L	0.35	0.45	0.6
L1		0.6REF	Pt.
L2	0.25REF		
R	0.1	-	
R1	0.1	-	-
θ	0°	4°	8°
0 1	5°	10°	15°

	→ b →
WITH PLATING	- − b1
1	1
¢ <u>↓</u>	c1
BASE I	METAL

NOTES:

1.All DIMENSIONS REFER TO JEDEC STANDARD MO-178

2.DIMENSION D DOES NOT INCLUDE MOLD FLASH 3.DIMENSION E1 DOSE NOT INCLUDE MOLD FLASH 4.FLASH OR PROTRUSION SHALL NOT EXCERD 0.25mm PER SIDE.

SOT23-3L

DISCLAIMER

AFSEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. AFSEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THE GRAPHS PROVIDED IN THIS DOCUMENT ARE STATISTICAL SUMMARIES BASED ON A LIMITED NUMBER OF SAMPLES AND ARE PROVIDED FOR INFORMATIONAL PURPOSE ONLY. THE PERFORMANCE CHARACTERISTICS LISTED IN THEM ARE NOT TESTED OR GUARANTEED. IN SOME GRAPHS, THE DATA PRESENTED MAY BE OUTSIDE THE SPECIFIED OPERATING RANGE (E.G. OUTSIDE SPECIFIED POWER SUPPLY RANGE) AND THEREFORE OUTSIDE THE WARRANTED RANGE.